TCAD Modeling for Mechanical Stress Management in 3D IC Packages

Xiaopeng Xu

TCAD R&D, Synopsys
Mountain View, California

June 12, 2014

NCCAVS Joint User Group Meeting on 3D Packaging
Outline

• Thermal Mismatch Stresses in 3D IC

• Modeling stress evolution with TCAD

• Analyzing stress effects on performance and reliability

• Stress management in 3D IC technology integration and design
Through Silicon Via Stress Effects

- **Reliability**
 - Pumping

- **Mobility change**
 - Radial tension
 - Circumferential compression

- Via material, process
- Silicon crystal orientation, P/N
- Barrier layer material
- Insulation liner material and thickness
- TSV pitch, diameter

Performance shifting due to TSV stress
- IMEC, VLSI 2010

TSV extrusion and de-lamination
- Tezzaron, RTI 2009

© 2014 Synopsys, Inc. All rights reserved. Synopsys, Chip Scale Review, April 2014
Thermal Mismatch Stress near u-bump

Micro-bump Array

Deformed Micro-bump

Active region

\[\alpha_{\text{under-fill}} > \alpha_{\text{bump}} \]

Thermal mismatch leads to die pull-down and bump push-up
Micro-bump Stress Effects

• Micro-bumps introduce stresses that depend on
 ▪ Micro-bump and under-fill material properties
 ▪ Micro-bump geometry and layout parameters

• Micro-bump stress effects
 ▪ Current shift in devices above micro bumps
 ▪ Interface delamination and cracking

Interface cracking near micro-bump

Device On current shift above micro-bump
Outline

• Thermal Mismatch Stresses in 3D IC

• Modeling stress evolution with TCAD

• Analyzing stress effects on performance and reliability

• Stress management in 3D IC technology integration and design
TCAD 3D IC Simulation Flow

Process Info

Deposit material=Oxide thickness=0.3 type=isotropic
Etch mask=metal_2 material=Oxide thickness=0.3

Layout Info

Process Simulation
Finite Element Analysis

Model Selection

Material Property

3D Structures
Solution Fields
Mobility Variations
Reliability Analyses

Effective Stress
Reliability
Mobility Variation

TSV and μ-bump Stress Simulation

Via-middle process:

1. FEOL → TSV → BEOL → Thinning → Backside → μ-Bump → Stacking

Layout

After TSV step

After stacking step

After bump step

Bottom die (Die 1)

Top die (Die 2)

Bottom die (Die 1)

© 2014 Synopsys, Inc. All rights reserved. Synopsys, 12th Int. Workshop on Stress in Microelectronics, 2012
Stress Evolution with Process Steps

After TSV step

After micro-bump step

Die 1

100 MPa

5.4 um

TSV

Die 1

100 MPa

3.3 um

Sxx (Pa)

© 2014 Synopsys, Inc. All rights reserved.

Synopsys, 12th Int. Workshop on Stress in Microelectronics, 2012
Material Behaviors in TSV Stack

- Top die (Die 2)
- Bottom die (Die 1)
- BEOL
- RDL Oxide
- TSV
- Micro-bump
- Under-fill

Material Behavior Details

- **Anisotropic elastic**
 - Silicon

- **Visco-elastic**
 - Under-fill

- **Cohesive Interface**
 - Material strength vs. De-bonding energy

- **Visco-plastic**
 - Solder

- **Orthotropic elastic**
 - BEOL

- **Elastic-plastic**
 - Copper

Synopsys, 12th Int. Workshop on Stress in Microelectronics, 2012
Outline

• Thermal Mismatch Stresses in 3D IC

• Modeling stress evolution with TCAD

• Analyzing stress effects on performance and reliability

• Stress management in 3D IC technology integration and design
P-mobility Variation on Die-1 Surface

Stress around TSV
- Radial tension
- Circumferential compression

- Mobility variation localized around TSVs
- Keep-Out-Zone (KOZ) design rule and place & route methodology

Synopsys, 12th international workshop on stress-induced phenomena in microelectronics, 2012
TSV Diameter and Pitch Effects

TSV Diameter = 5 um

TSV Diameter = 10 um
~38% higher normal stress

Synopsys, 12th international workshop on stress-induced phenomena in microelectronics, 2012
N-mobility Variation on Die-2 Surface

- Mobility variation localized above u-bump
- KOZ design rule and place & route methodology

Synopsys, 12th international workshop on stress-induced phenomena in microelectronics, 2012
Under-fill CTE Impact

LCTE: 15.0, 30.0 and 45.0 ppm/°C

Larger under-fill CTE leads to greater mobility variation

Active region

Large under-fill CTE increases contraction and pulling down

Synopsys, MRS Proceedings, 2011
Copper Anisotropic Effect on Crack

- Crack driving force and mode mixity depends on copper anisotropy in different crystal orientation

<table>
<thead>
<tr>
<th>Anisotropic Copper</th>
<th>E1</th>
<th>E2</th>
<th>E3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anisotropic 1</td>
<td>156 GPa</td>
<td>69 GPa</td>
<td>69 GPa</td>
</tr>
<tr>
<td>Anisotropic 3</td>
<td>69 GPa</td>
<td>69 GPa</td>
<td>156 GPa</td>
</tr>
</tbody>
</table>

Synopsys/Fraunhofer, IEEE TDMR, 2012
Outline

• Thermal Mismatch Stresses in 3D IC

• Modeling stress evolution with TCAD

• Analyzing stress effects on performance and reliability

• Stress management in 3D IC technology integration and design
Managing KOZ with TCAD Modeling

M. Rabie, et al, GLOBAL FOUNDRIES, IITC 2014

- Tensile stress due to TSV copper shrinkage is compensated by compressive stress due to CMP stop layer
- Experiments and TCAD simulations
Stress Management at Qualcomm

TSV Effect

μ-Bump Effect

Stacking Effect

Qualcomm, CICC 2010, ECTC 2014
Summary

• Mechanical stress in TSV stacks affects both performance and reliability

• TCAD modeling of stress evolution and stress effects provides valuable insights

• 3D IC design and technology configurations can be optimized with stress management